热门关键词:上海雕塑 上海3D打印 美陈制作 广告道具 浮雕制作 道具制作 橱窗展示
联系人:韦经理
邮 箱:1156743471@qq.com
电 话:155-8880-8889
地 址:上海市青浦区纪鹤公路5348号北3层
3D打印技术主要包括获取图像、建模及实体打印三个步骤。超声心动图作为3D打印技术获取图像的重要手段之一,在心脏结构及功能的评估方面占有重要的优势。基于超声数据的3D打印技术通过构建心脏疾病模型来实现术前评估、医疗装置设计、血流动力学模拟及医疗教育,可以为临床提供更准确、直观的信息。
本文即对基于超声数据的3D打印技术在心脏领域的应用进展进行综述。
2.基于超声数据的3D打印技术步骤
1)获取图像:应用经胸或经食管三维容积探头,清晰获取二维灰阶后使用“4DZOOM”功能获取感兴趣区的三维DICOM原始数据,并在工作站上转换为DICOM格式。
2)建模:应用Matlab软件获取断层信息后使用Mimics innovation suite 17.0对数据进行灰阶反转、阈值分割、编辑3Dmask(感兴趣区的轮廓掩膜)、交互式分割手动去噪及计算三维模型等后续工艺,以STL格式保存。
3)实体打印:将STL格式的图像导入打印机中,得到感兴趣区域的3D模型。
3.基于超声数据的3D打印技术在心脏领域的临床应用
加丹等通过对比超声与CT重建左心耳3D模型的数据,发现超声在评估左心耳大小、形态方面与CT的一致性较高,证实三维超声可以提供3D打印左心耳的数据集。Song等研究表明基于超声数据的3D打印技术打印左心耳模型准确可行,该模型对左心耳形态、分类与CT结果一致性较强。基于超声数据的3D打印左心耳模型具有容易获取数据、准确后续工艺、实现模拟操作的优点,有望为左心耳封堵术提供个体化诊疗方案。Pellegrino等研究证实了基于造影及经食管超声心动图打印的左心耳3D模型有助于左心耳封堵术中封堵盘大小及放置位置的选择。
2)心脏瓣膜病 心脏瓣膜结构精细,可以控制血液在心脏中的流动方向,具有重要的生理功能。引起心脏瓣膜病变的原因主要有先天性和后天性两种,后者还包括风湿性、感染性及退行性等瓣膜病变。随着医学的发展,老龄人口的增多,退行性病变引起的瓣膜性心脏病病人逐年增多。
经食管超声心动图是获取瓣膜动态图像的常规方法,由于其三维图像空间和时间分辨率较高,生成的动态三维图像被认为优于传统外科手术心脏停搏时的瓣膜图像,因此三维超声图像可以作为3D打印的数据源。Mahmood等研究表明,应用超声数据进行3D打印正常及病理的二尖瓣环模型较超声图像可以更详细地传达临床信息,有利于临床医师评估瓣环病理改变及修复术后的变化。 Owais等通过基于超声数据的3D打印技术打印出病人个体化的二尖瓣环,更好地评估了术前二尖瓣环几何构造、大小及形状。Mahmood等根据经食管超声心动图获取二尖瓣的动态影像学数据,通过3D打印技术打印出二尖瓣收缩期及舒张期的实体模型,证实超声图像可以作为瓣膜3D打印的数据源,应用3D打印正常、缺血性及附带黏液瘤的二尖瓣均可行。
3)先天性心脏病 先天性心脏病主要包括简单型和复杂型两种类型。对于简单型先天性心脏病(如房间隔缺损、室间隔缺损及动脉导管未闭),目前大多由传统的手术治疗改为介入治疗,但对于多发、形态不规则的缺损,在选择合适的封堵方案上存在困难,需要更详细直观的影像学评估。对于复杂型先天性心脏病(如法洛四联症、大动脉转位及右室双出口等),因其空间结构复杂,即便结合多种影像学检查,仍存在漏、误诊等情况。而基于超声的3D打印模型不仅可以帮助手术医师选择合适的装置及手术路径,还可以提高手术效率、降低辐射暴露及手术并发症的发生,进而改善手术治疗效果。临床证实基于超声数据的3D打印先天性心脏病模型不仅安全、有效,还可以实现数据个体化。
邱旭等通过结合21例多发型房间隔缺损病人的CT及三维超声图像,3D打印心脏模型并进行模拟封堵测试从而确定封堵方案,均成功行封堵治疗,术后随访1个月无明显并发症。
4.基于超声数据的3D打印技术在医患沟通与教育方面的应用 基于超声数据的3D打印模型除可以帮助临床医师模拟手术进而优化手术方案,还可以辅助临床医师进行医患沟通,同时也在医学教育方面占有重要的地位。3D打印模型的出现可以更生动立体地向病人及其家属展示这种疾病及手术方案,有利于病人及家属理解手术的过程及存在的并发症。在医学教育方面,3D打印模型增加医学生对心脏正常及异常解剖结构的理解,提高医学生的空间定位能力。
Loke等通过3D打印技术打印出法洛四联症模型对18例医学生进行授课,并与17例仅学习了二维图像的医学生进行比较,发现通过3D模型进行学习的学生对教学满意度明显增加。除此之外,随着获取解剖尸体难度增加,因3D打印模型不涉及伦理问题,其在解剖教学方面的应用存在巨大潜能。
现阶段基于超声的3D打印技术仍存在以下局限性:
①三维超声的分辨率仍有待提高,以便显示心脏更细微的结构;
②心脏及其内部结构是动态的,而目前打印出的模型都是静态的;
③目前打印心脏的材料大部分为硬质材料,不能精确地反映心肌组织的柔软度;
④国内外缺乏大样本临床实验证明其临床可用性及安全性。