欢迎您来到有条有理(上海)道具有限公司网站!
有条有理(上海)道具有限公司
7X24小时服务热线:

155-8880-8889

热门关键词:上海雕塑 上海3D打印 美陈制作 广告道具 浮雕制作 道具制作 橱窗展示

联系我们

有条有理(上海)道具有限公司

联系人:韦经理
邮 箱:1156743471@qq.com
电 话:155-8880-8889
地 址:上海市青浦区纪鹤公路5348号北3层

您的位置:首页 >> 新闻资讯 >> 公司新闻

解析:3D打印材料及其应用

发布时间:2022-09-10 14:20:41浏览:7180点赞:

3D打印材料是3D打印技术重要的物质基础,种类范围主要包括聚合物材料、金属材料、陶瓷材料等。文章首先简要介绍了目前3D打印的各类常见材料,然后分别介绍了它们的特点、性能要求及相关应用情况。最后,结合研究的最新进展,对3D打印新材料及其前景进行展望。

1、3D打印

3D 打印技术,也被称为3D打印(Additive Manufacturing,AM)技术,是一项起源于20 世纪80 年代集机械、计算机、数控和材料于一体的智能制造技术。该技术的基本原理是根据三维实体部件经分层处理得到的二维截面信息,以点、线或面作为基本单元进行逐层堆积制造,最终得到实体部件或原型。3D打印区别于传统的减材(如切削加工)和等材(如锻造)制造方法,可以实现传统方法没有办法或很难达到的复杂结构部件的制造,并大幅减少加工工序,缩短加工周期,因此得到了世界各地科研工作者的广泛关注。

3D 打印材料是3D 打印技术重要的物质基础,它的性能在很大程度上决定了成形部件的综合性能。发展至今,其材料种类已经十分丰富,主要种类包括聚合物材料、金属材料、陶瓷材料等。本文将结合几种3D打印材料研究及应用的最新进展,分别对3D打印用聚合物材料、金属材料和陶瓷材料进行介绍。

2、3D打印用聚合物材料

3D打印用聚合物材料主要包括光敏树脂、热塑性塑料及水凝胶等。纸张、淀粉、糖、巧克力等也可纳入聚合物材料的范畴,部分学者及企业对其进行了3D打印研究,但因篇幅所限文中不进行展开介绍。

按照聚合体系划分,可以分为自由基聚合和阳离子聚合,两者的聚合机理和依靠的活性基团各不相同。自由基聚合依靠光敏树脂中的不饱和双键进行聚合反应,而阳离子聚合依靠光敏树脂中的环氧基团进行聚合反应。自由基聚合体系固化速度快,原料成本低,但在空气中存在一定程度的氧阻聚效应,会对固化性能及部件性能产生影响;阳离子聚合体系则无氧阻聚效应,固化收缩小甚至无收缩,但对水分很敏感,且原料成本较高,所以目前3D打印中使用的光敏树脂以自由基聚合体系为主。

3D打印用光敏树脂主要采用的是自由基聚合的丙烯酸酯体系。商业化的丙烯酸酯有多种类型,需要根据不同的需求对配方进行调整。总体而言,3D 打印用的光敏树脂有以下几点要求:

(1)固化前性能稳定,一般要求可见光照射下不发生固化;

(3)粘度适中,以匹配光固化成形装备的再涂层要求;

(4)固化收缩小,以减少成形时的变形及内应力;

(5)固化后具有足够的机械强度和化学稳定性;

(6)毒性及刺激性小,以减少对环境及人体的伤害。

除此之外,在一些特殊的应用场合还会有一些其他的需求,如应用于铸造的光敏树脂要求低灰分甚至无灰分,再如应用牙科矫形器或植入物制造的树脂要求对人体无毒或可生物降解等性能。目前市面上销售的光敏树脂种类多样,能够满足不同领域的需求。

热塑性聚合物是最常见的3D 打印材料之一,常见的3D打印用热塑性聚合物有丙烯腈-丁二烯- 苯乙烯塑料(丙烯腈-丁二烯)、聚乳酸(PLA)、聚酰胺(尼龙)(PA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚己内酯(PCL)、聚苯砜(PPSF)、热塑性聚氨酯(弹性橡胶)、聚醚醚酮(PEEK)等。

PLA 和丙烯腈-丁二烯 是FDM 最常用的耗材,因价格便宜而十分普及。丙烯腈-丁二烯 是常见的工程塑料,具有较好的机械性能,但3D 打印条件要求苛刻,在打印过程中容易产生翘曲变形,且易产生刺激性气味。PLA 是可降解的环保塑料,打印性能较好,是一种较为理想的3D 打印热塑性聚合物,已广泛应用于教育、医疗、建筑、模具设计等行业。除此之外,PLA 还具有良好的生物相容性,加入羟基磷灰石改性的PLA可用于组织工程支架的制造。

PA是一种半晶态聚合物,经SLS成形后能得到高致比重且高强度的部件,是SLS 的主要耗材之一。SLS中所使用的PA需具有较高的球形度及粒径均匀性,通常采用低温粉碎法制备得到。通过加入玻璃微珠、粘土、铝粉、碳纤维等无机材料可制备出PA复合粉末,这些无机填料的加入能显著提高某些方面的性能,如强度、耐热性能、导电性等,以满足不同领域的应用需求。

弹性橡胶 是一种具有良好弹性的热塑性聚合物,其硬度范围宽且可调,有一定的耐磨性、耐油性,适用于鞋材、个人消费品、工业部件等的制造。结合3D打印技术可以制造出传统成形工艺难以制造的复杂多孔结构,使得制件拥有独特且可调控的力学性能。采用SLS 工艺打印的多孔结构弹性橡胶鞋垫的弹性性能和使用强度已达到市场使用标准。

图1 胸骨假体CAD模型及实物

水凝胶是一种具有交联三维网络的高分子结构,能够吸收并保持大量的水分(可达99%)。根据聚合物来源的不同,可分为天然水凝胶与合成水凝胶。前者如明胶、琼脂、海藻酸钠等具有较高的溶胀性,机械性能相对较差,限制了其应用范围。后者由于水凝胶的成分、结构、交联度可调,使得合成水凝胶的各项性能可以在较大范围内进行调控;同时,合成水凝胶重复性好,能够进行大规模的生产制造,因此得到国内外研究人员的广泛关注。

传统的水凝胶已经在制造隐形眼镜、创伤修复中取得了较多的应用。水凝胶作为组织工程的理想材料,在该领域的应用前景十分广阔。除此之外,水凝胶还可以作为传感器的材料,这是利用了它的膨胀行为和扩散系数随着周围环境变化的特性。传统水凝胶成形主要依靠模具,没有办法制造复杂结构;采用3D 打印技术成形水凝胶,不仅能够实现复杂形状的制造,还能实现复杂孔隙甚至梯度结构的制造,使得3D打印的水凝胶具有传统制造方式没有办法得到的性能。除此之外,水凝胶中可以加入活细胞,使得3D打印人体器官成为可能。

3、3D打印用金属材料

根据2018 年的Wohlers Report 报道,金属3D打印产业有了明显发展。文中指出,2017 年售出1768 套金属3D 打印设备,相比2016 年的983 套增长了将近80%。作为3D打印中非常重要的材料,金属材料在汽车、模具、能源、航空航天、生物医疗等行业中都有广阔的应用前景。

3D 打印所使用的金属线材材与传统的焊丝相同,理论上凡能在工艺条件下熔化的金属都可作为3D 打印的材料。丝材制造的工艺很成熟,材料成本相比粉材要低大量。

按照材料种类划分,3D打印金属材料可以分为铁基合金、钛及钛基合金、镍基合金、钴铬合金、铝合金、铜合金及贵金属等。

铁基合金是3D 打印金属材料中研究较早、较深入的一类合金,较常用的铁基合金有工具钢、316L 不锈钢、M2 高速钢、H13 模具钢和15-5PH 马氏体时效钢等。铁基合金使用成本较低、硬度高、韧性好,同时具有良好的机械加工性,特别适合于模具制造。3D打印随形水道模具是铁基合金的一大应用,传统工艺异形水道难以加工,而3D打印可以控制冷却流道的布置与型腔的几何形状基本一致(图2),能提高温度场的均匀性,有效降低产品缺陷并提高模具寿命。

图2 模具随型冷却流道示意图

镍基合金是一类发展最快、应用最广的高温合金,其在650~1000°C 高温下有较高的强度和一定的抗氧化腐蚀能力,广泛用于航空航天、石油化工、船舶、能源等领域。例如,镍基高温合金可以用在航空引擎的涡轮叶片与涡轮盘。常用的3D打印镍基合金牌号有Inconel 625、Inconel718及Inconel 939等。

铝合金比重低,耐腐蚀性能好,抗疲劳性能较高, 且具有较高的比强度、比刚度, 是一类理想的轻量化材料。3D 打印中使用的铝合金为铸造铝合金, 常用牌号有AlSi10Mg、AlSi7Mg、AlSi9Cu3 等。韩国通信卫星Koreasat-5A及Koreasat-7 使用了SLM制造的AlSi7Mg轻量化部件(图3),不仅由原来的多个部件合成一个整体制造,部件重量比原设计降低22%,制造成本降低30%,生产周期缩短1—2个月。

图3 通讯卫星上使用的3D打印轻量化构件

形状记忆合金(Shape Memory Alloy,SMA)是一类形状记忆材料,具有在受到某些刺激(如热、机械或磁性变化)时“记忆”或保留先前形状的能力。SMA在机器人、汽车、航空航天、生物医疗等领域有着广阔的应用前景。NiTi 合金是目前发展比较成熟的SMA,但NiTi 合金是难加工材料。将3D 打印技术应用于SMA 部件的制造,不仅有望解决SMA的加工难题,还能实现传统工艺没有办法实现的复杂点阵结构的制造。近年来有不少学者对NiTi 合金的SLM工艺进行了探索并取得了一定的成果。目前,SLM打印的NiTi 合金部件已经显示出良好的形状记忆效应,在8 次压缩循环后具有约5%的可恢复应变。除此之外,SLM成形的NiTi 样品的形状记忆行为与时效工艺高度相关,经350°C—18 h 时效的样品展现出了几乎完美的超弹性。

4、3D打印用陶瓷材料

传统陶瓷可以定义为组成硅酸盐工业的那些陶瓷制品,主要包括粘土、水泥及硅酸盐玻璃等。传统陶瓷的原料多为天然的矿物原料,分布广泛且价格低廉,适合于日用陶瓷、卫生陶瓷、耐火材料、磨料、建筑材料等的制造。传统陶瓷的成形大多需要模具,将3D打印工艺应用于陶瓷或玻璃制品的制造中,可以实现陶瓷制品的订制化,提高附加值,并有可能赋予其独特的艺术价值。

将上述挤出3D 打印设备进行放大,便可采用混凝土作为耗材进行房屋建筑的3D打印。为保证3D打印建筑的顺利实施,3D打印中所使用的混凝土材料比传统混凝土要求更高,如传输和挤出过程中要有足够的流动性,挤出之后要有足够的稳定性,硬化后要有足够的强度、刚度和耐久性等。3D 打印混凝土不仅可以应用于非线性、自由曲面等复杂形状建筑的建造,在未来空间探索中有望就地采用资源进行基地的建造 (图4)。

图4 NASA ACME计划:太空3D打印建筑物假想图

覆膜砂是铸造产业中常用的造型材料,但传统的覆膜砂需要借助模具进行成形,模具的形状复杂程度有限且生产成本高,不适合小批量铸件的生产。3D打印技术可以实现铸型(芯)的整体制造,省去了传统铸型(芯)多块拼接的过程,节约时间成本的同时,提高了铸件精度。

玻璃是一种非晶态材料,其成形方式与陶瓷材料不同,由于玻璃在成形时处于熔融态,通常以吹制、压制、拉制、辊压或铸造等方式进行成形。较为成功的玻璃3D打印工艺是FDM工艺,打印时熔融玻璃储存在高温坩埚中,通过挤出头挤出冷凝成形。该工艺可以实现透光性良好的玻璃制品,但由于目前玻璃打印的条件较为苛刻,尚未得到普及。

氧化物陶瓷物理化学性能稳定,烧结工艺比较简单,是陶瓷3D打印研究最多的材料。适用氧化物陶瓷的3D 打印工艺种类也最多,3DP、SLS、FDM、DIW、SLA、SLM、LENS 等工艺均可用于氧化物陶瓷的成形。

基于粉体的3DP和SLS 利用液态或低熔点有机粘结剂进行成形,由于得到素坯致比重较低,在烧结过程中难以实现完全的致密化,多用于成形多孔陶瓷;SLS 与等静压技术结合的工艺和基于浆料的SLS 工艺都可有效提高了素坯的致比重,实现致密氧化物陶瓷的制造。

FDM的耗材是陶瓷粉体与热塑性高分子混合制得的丝材,一般固含量在50 vol%以上,但因制丝成本高、制件精度低等原因,FDM工艺很少使用。

图5 DIW技术制备透明石英玻璃流程图

图6 SLA技术制备透明石英玻璃流程图

直接SLS、SLM和LENS技术具有一些相同点,均是利用高能激光束烧结或熔化氧化物陶瓷粉末进行成形,但目前这些方法尚不成熟,存在热应力大、制件易产生缺陷、精度较低等问题。

(1)碳化物、氮化物熔点很高甚至无熔点,难以采用高能束直接熔化成形;

(2)碳化物、氮化物在高温环境下易与氧发生反应生成低温相,影响制件的高温性能;

(3)3D打印中所使用的大多为有机粘结剂,成形后有机残碳难以完全去除,影响致密化过程。

目前较有效的碳化物、氮化物3D 打印方法主要有SLS、DIW和SLA。

SLS是目前研究较多的碳化物和氮化物的3D打印方法。SLS 使用的碳化物、氮化物的材料主要包含无机粉体和有机粘结剂, 无机粉体可以是碳化物、氮化物本身(可含助烧剂)或者能够通过化学反应转化为目标陶瓷材料的前驱体(如Si、SiO2、C等)。在制得素坯后,通过一定的后续工艺得到所需的碳化物、氮化物陶瓷部件。例如SiC 陶瓷可以通过两种方式得到:一是通过SLS 技术成形出以Si 和SiC 为主的骨架,之后向骨架中浸渗树脂、热解后生成多孔碳,最后通过渗硅得到SiC陶瓷;二是通过成形高分子骨架,热解之后得到C 骨架,然后通过渗硅得到SiC 陶瓷。然而这两种方式都不能确保反应完全进行得到纯SiC相,其中的残Si 或者残C都会对SiC 陶瓷的性能产生负面影响。

图7 SLA制备SiOC前驱体陶瓷流程图

图8 4D打印的弹性前驱体衍生陶瓷折纸结构

5、结束语

在线客服
服务热线

服务热线

155-8880-8889

微信咨询
有条有理(上海)道具有限公司
返回顶部