欢迎您来到有条有理(上海)道具有限公司网站!
有条有理(上海)道具有限公司
7X24小时服务热线:

155-8880-8889

热门关键词:上海雕塑 上海3D打印 美陈制作 广告道具 浮雕制作 道具制作 橱窗展示

联系我们

有条有理(上海)道具有限公司

联系人:韦经理
邮 箱:1156743471@qq.com
电 话:155-8880-8889
地 址:上海市青浦区纪鹤公路5348号北3层

您的位置:首页 >> 新闻资讯 >> 行业新闻

展望未来行业:人工智能、

发布时间:2022-09-19 19:13:13浏览:7193点赞:

随着工业技术的日益普及,这一自动化和数字化浪潮被称为“工业4.0”,就像第四次工业革命一样。

那么,工厂的未来是什么样的呢?

为了回答这个问题,我们深入研究了制造过程的8个不同步骤,来了解它们是如何开始改变的:产品研发:平台是如何使研发人才“民主化”的;人工智能是如何帮助材料科学的;以及如何用AR/VR来构造草图的。资源规划和采购:按需分散制造和区块链项目正在研究整合供应商的复杂性。操作技术:监控和机器数据:看看为未来工厂提供动力的IT堆栈和平台。首先,工厂将会基本数字化,而且我们还将看到更大的预测能力。

劳动力增强和管理AR、可穿戴设备和外骨骼衣物(exosuits)正在工厂里增强人类的能力。

加工、生产和装配:模块化设备和定制机器(如3D打印机)使制造商能够处理更多的多样化需求。

质量保证:计算机视觉将如何发现缺陷,以及软件和区块链技术将如何更快地发现问题(并实施召回)。

仓储:在机器人技术和视觉跟踪的帮助下,在出现无人工厂之间,就会出现“熄灯”仓库。

制造商预测,未来5年,整体效率将以1990年以来的7倍的速度增长。尽管制造业占美国GDP的11.7 %,雇佣了8.5 %的美国人,但它仍然是一个数字化程度相对较低的领域,这意味着自动化和软件驱动方面,还有很大的发展空间。

随着新技术的发展,制造业正在发生重大的变革,几乎所有制造业垂直领域——从汽车产业到电子产业,再到制药业——都会受到影响。时间表和技术会因行业而异,但几乎每个垂直行业的大多数步骤都会有所改变。

1、产品研发

从药物生产到工业设计,规划阶段对于大规模生产至关重要。在各行各业,设计师、化学家和工程师都在不断地进行假设检验。

这个设计看起来是否正确?这个化合物是否符合我们的需求?都需要进行大量的测试和迭代,这是研发的精髓。大规模生产的特征使得最后时刻的重新设计的成本很高。

虽然研发科学家看起来在制造过程中并不重要,但他们在提供最新和最伟大的技术方面——特别是在高科技制造业领域——正在扮演者越来越重要的角色。

机器人和3D打印技术加速垂直领域产品的开发

3D打印已经成为设计工作室的主要工作。在订购成千上万个物理部件之前,设计人员可以通过3D打印来查看未来产品的外观。

同样,机器人技术可以自动化各种垂直方向上试错的物理过程。

使用自动移液管系统和机器臂,液体处理机器人可以进行高通量的实验,以更快和更少的人为误差获得成功的组合。

下面是用于转移样本的机器人基因测试仪Counsyl(左)和Zymergen的移液机器人(右),用于自动化微生物培养测试。

“材料工程需要有一种能够检测非常小的粒子的能力——比如在300毫米晶片上找到10纳米粒子。这相当于在西雅图市找到一只蚂蚁。”

——奥姆·纳拉玛苏(Om Nalamasu),Applied Materials首席技术官

除了生物技术之外,材料科学在计算和电子学领域也发挥了关键作用。

值得注意的是,英特尔和三星等芯片制造商是全球最大的研发投入者之一。随着半导体体积变得越来越小,在纳米尺度下工作需要的精度超出了人的能力,这使得机器人成为首选。

未来,科学工具将越来越自动化和精确,以处理微尺度精度任务。

人工智能正在加速材料科学的发现

尽管研发工作的数字化程度和软件化程度低于人们的预期(美国国家科学院称,开发新材料往往是开发新产品的最长阶段),但爱迪生精神依然存在于今天的研发实验室中。科学方法更好地数字化,对于开发新产品和材料,然后大规模制造这些产品和材料至关重要。

简而言之,各行各业的制造商——工业生物技术、药物、汽车、电子或其他物质产品——都依靠机器人自动化和3D打印来保持竞争力。

当然,未来的制造商将依靠智能软件来推动他们的研发过程。

AR和VR将用于建模过程

目前,各种类型的制造商都依靠计算机辅助设计(CAD)软件进行原型设计。在未来的制造过程中,AR和VR可以在研发中发挥更大的作用,并且可以有效地将工业设计人员的设计图以“实体”的方式展示出来,从而消除对3D打印物理模型的需求。

Autodesk的游戏引擎Stingray增加了对HTC Vive和Oculus Rift头戴设备的支持。此外,游戏和VR引擎制造商Unity已宣布与Autodesk建立合作关系,以提高互操作性。

该专利设想,通过“半透明眼镜”使用AR,但也提到“配备摄像头的移动设备”,暗示了在iPhone上使用ARKit的潜在3D打印机会。

康奈尔大学的研究人员最近展示了使用AR / VR绘制3D打印对象的能力。最终,人机界面可以无缝衔接,实时“雕刻”3D模型。

未来,研发团队将进一步研究AR和VR,并测试它是如何与3D打印以及传统原型堆栈相结合的。

2、资源规划和采购

一旦产品设计完成,下一步就是生产了。通常情况下,这需要收集零部件供应商、基础材料制造商和合同制造商的信息,并建立网络,以实现产品的大规模生产。但寻找供应商并获得信任是一个艰难且耗时的过程。

例如,真空吸尘器制造商戴森( Dyson )花了长达两年的时间为其在汽车业的新业务寻找供应商。“无论你是戴森还是丰田,制造汽车前灯都需要18个月的时间,”一名参与该项目的员工说。

我们研究了技术是如何改进这一复杂的采购流程的。

分散式零件制造

分散式制造可能是一项即将发生的变化,可以帮助制造商处理对零件订单的需求。

分布式或分散式制造采用与IT协调的地理上分散的设施网络。零件订单,尤其是用于制造中型或小型产品(如3D打印零件)的订单,可以通过分布式制造平台按比例完成。

区块链技术用于资源跟踪

企业资源规划(ERP)软件通过客户关系管理(CRM)跟踪从原材料采购到资源分配的情况。

然而,一个制造企业可能会有很多不同的ERP系统和孤立的数据,具有讽刺意味的是,意在简化事务的ERP“堆栈”,也可能会变成一团乱七八糟的软件。

事实上,普华永道最近的一份报告发现,许多大型工业制造商拥有多达100个不同的ERP系统。

当涉及到追踪零件和原材料的来源时,区块链可以对这些零件和材料流入工厂的情况进行管理。在区块链中,随着产品在从制造到销售的整个供应链中转换,这些交易数据可以记录在永久分散的记录中——从而减少时间延迟、成本和人为错误。

3、操作技术:监控和机器数据

据推测,未来的制造过程最终将看起来像一个巨大的、自我维持的网络物理有机体,只需要间歇性的人工干预。但在各个行业要实现这一目标,还有很长的路要走。

根据精益生产指标(以整体设备效率或OEE衡量),世界一流的制造基地的理论产能达到85%。但工厂平均只有大约60%,这意味着在活动简化方面有很大的改进空间。

在未来20年里,工业4.0的成熟首先需要基本的数字化。

最初,我们将看到机器变得更加数字化友好。之后,数字化可以转化为预测性维护和真实预测性智能。

大型产品已经演变为“按小时计算的电力”业务模式,可确保正常运行时间。按小时供电(或基于性能的合同)现在在制造业中相当普遍,尤其是在半导体、航空航天和国防等关键任务领域。

如果不对每一步进行数字化处理,效率就会被留在纸上。

然而,现在工厂车间里通常留有几十年的旧机器。除了显著的成本之外,跟踪温度和振动的传感器并不是在考虑传统机器的情况下制造的,也会延长了校准周期和功效。

从基本数字化到预测

对于制造商来说,OT堆栈通常包括:

连接的制造设备(通常配备改装后的工业物联网传感器)

监控和数据采集(SCADA)系统和人机界面(HMI),为运营分析人员提供工业监控

可编程的逻辑控制器(PLC),这是在工厂机器上抓取数据的加固型计算机

3D打印机(增材制造)和数控铣削的机器

从某种意义上说,IT和OT是同一个技术堆栈token的两个方面,而且随着制造业得到更好的数字化,边界将继续模糊。

但是,将便宜的物联网传感器应用于一切对象上并不是万能的,而且完全有可能通过更少数量的更专业、更精确的物联网传感器创造更多价值。举例来说,Augury使用配备人工智能的传感器来监听机器并预测故障。

具有成本意识的工厂业主将认识到,高度精确的传感器,将比不必要的物联网提供更高的投资回报率。

边缘的新架构

计算在“边缘”完成,或者更接近传感器,是IIoT体系结构中的一种新趋势。

在未来工厂中,连接的机器应该没有什么不同。

在不久的将来,人工智能和硬件的进步将允许物联网独立存在,因为我们知道它几乎与集中式的云无关。

此外,云计算延迟在制造业方面有很大的不利因素。任务关键型系统(如连接的工厂)无法承受将数据包发送到离线云数据库的延迟。

从长远来看,边缘计算为自动化工厂铺平了道路。支撑边缘计算的人工智能软件将是允许工厂机器进行独立决策的基础设施。

总而言之,在网络边缘利用更多计算的设备将迎来新的分散式工厂设备浪潮。

网络安全是重中之重

IIoT的一个悖论是,工厂承担着重大的下行风险,但几乎没有投资于安全防护上:最近一项调查中显示,28%的制造商表示,过去一年由于网络安全攻击导致收入损失,但只有30%的高管表示他们会增加技术方面的支出。

网络攻击可能对重工业造成毁灭性影响,在重工业中,网络物理系统可能会受到影响。WannaCry勒索软件袭击导致欧洲雷诺日产汽车工厂关闭。2014年,一次复杂的网络攻击导致德国钢铁厂发生物理损坏。

同样,添加连接的物联网对象和工业控制系统(ICS)传感器已经在端点处引发了新的漏洞。

此外,一些最活跃的企业网络安全投资者是对OT计算感兴趣的企业。戴尔(其中包括工业IoT网关)以及谷歌、通用、三星和英特尔等都是这一领域最活跃的。

安全地管理ICS和IIoT系统将继续成为一个关键的投资领域,特别是黑客攻击证明了OT的脆弱性之后。

4、劳动力增强和管理

制造业看起来在短时间内发生了急剧的变化。正如一位退休的西门子高级管理人员最近所说:“车间对员工的技能要求更高了。现在,西门子基本上没有高中毕业生能做的工作了。“

但更好的数字化和物联网技术正在提高工人的效率。以下是AR,可穿戴设备以及外骨骼衣物等新兴技术是如何适应这一趋势的。

AR和移动技术正在将操作手册数字化

AR将能够很快地提高工人的技能。

除了可以传递工厂性能指标和分配工作的免提“浏览器”之外,AR还可以分析复杂的机器环境并使用计算机视觉来绘制机器的零件,如实时视觉手册。这使得诸如现场服务之类的高技能劳动力成为一种“可下载的”技能(以一种与The Matrix无异的方式)。

外骨骼和安全技术将成为肮脏和危险工作的标配

人类仍然需要做一些肮脏和危险的工作,可穿戴设备和外骨骼将增强人类的工作能力,同时也会提高安全性。

5、加工、生产和装配

自动化首先会出现肮脏、枯燥和危险的工作场景中。

大规模生产流水线中的许多人类工作已经被自动化了。像工业机器人和3D打印这样的网络系统在现代工厂中越来越普遍。机器人变得更便宜、更准确、更安全、更普遍。

消费者的需求也在变化,制造商正试图跟上日益增长的定制化和多样化的需求。

工业4.0的愿景中,有完全智能的工厂,其中联网的机器和产品通过物联网技术进行通信,不仅仅是制造原型和组装一系列特定的产品,还会基于消费者反馈和预测信息对这些产品进行迭代。

在我们进入一个人类基本上与制造业无关的世界之前,模块化设计可以帮助现有工厂变得更加灵活。

模块化使得工厂可以更加流线化地进行定制,而不是像传统的流水线一样。模块化可以以更小的部件或模块的形式出现,来生产个性化更强的产品。它也可能是设备,比如可以在机器人和机器上使用可交换的终端效应器,从而可以进行更多种类产品的加工。

目前,大规模生产已经在为满足消费者对更大定制化和多样化的需求而进行重新设计。波士顿咨询调查显示,90%的汽车制造商表示,预计到2030年,将装配模块化生产线。模块化设备将允许更多的模型从相同的生产线中脱离出去。

机器人将单一化的工作自动化

工业机器人的采用导致了制造业工作岗位的减少,制造业工作岗位数十年来一直在下降。正如美国美林银行的一份报告所解释的:“机器人增多,人类减少。”

但最新的机器人技术浪潮,似乎正在帮助人类工人更好地完成工作。

协作机器人可通过辅助运动来进行编程。首先,它们复制人们的手工向前移动来“学习”。这些机器人被认为是用于协作的,因为它们可以和人类一起工作。

哪怕是最好的机器人仍然存在局限性,但经济学家担心自动化最终会导致劳动力大规模重组。

由于世界范围内的劳动力成本上升,机器人技术正在引发新一轮的回流——制造业回归美国。

就单一化的工作来说,比如包装、分拣、重复提升等,机器人变得非常有价值。协作机器人制造商Universal Robots表示,工厂采用它的一些机器人手臂,平均在195天内就能回本。总体而言,平均一个协同机器人售价为24000美元。

3D打印

对于某些大规模生产的产品,3D打印的运用,或许不会颠覆注塑成型的规模经济。但对于较小规模的生产,使用3D打印是有意义的。

通过使用3D打印制造的零部件,通用电气制造的发动机所需的燃料比以前的设计少了15%。通用电气表示,它将在2018年开始对这些发动机进行潜在的飞行测试。

随着大规模定制在某些消费产品中兴起,制造商将越来越多地转向3D打印。

6、质量保证

随着工厂数字化,质量保证将越来越多地嵌入到组织的代码库中。机器学习支持的数据平台,如Fero,Sight Machine和Uptake等,将能够将精益生产原理编入系统的内部运作中。

计算机视觉和区块链技术已经出现,并提供了一些令人信服的替代方法来追踪生产质量。

计算机视觉

在大规模生产中,检查每个产品是否符合规格要求是一项非常枯燥的工作,而且还会受到人为错误的限制。相比之下,未来的工厂会使用机器视觉来扫描人眼可能忽略的瑕疵。

电子学中,有许多瑕疵甚至对人眼都看不到。能够即时识别和分类缺陷将使质量控制自动化,会使工厂更具竞争力。

区块链将有助于召回

2017年8月,沃尔玛,?Kroger,雀巢和联合利华等与IBM合作,通过加强供应链跟踪,利用区块链来改善食品安全。沃尔玛自2016年以来一直与IBM合作,并表示区块链技术有助于将追踪芒果的出货时间从7天缩短至2.2秒。

随着其他9家大型食品供应商加入IBM项目,食品行业在这种罕见的合作中也可以更好地实现安全召回。

同样,使用区块链或分布式分类账的工厂在召回时可以更好地定位。在加工食品或汽车的工厂中,单一的召回管理系统可以更迅速地找出故障零件或污染批次的来源,从而更有效地挽救生命和金钱。

7、仓储

“熄灯”仓库可能比“熄灯”工厂来得更快。

随着电子商务的兴起,对仓库空间的需求出现了爆炸式的增长。去年,仓库平均高度与2001年相比增长了21%,2017年10月,新仓库建设支出达到高峰,达到了23亿美元。

仓储机器人

以制造商和硬件为重点的投资者将继续寻找下一个比现状要好10倍的机器人制造商。而更便宜和更灵活的机器人的经济性可能意味着,在短期内,我们将看到更多的机器人和人类一起工作。

用于扫描的人工智能

随着计算机视觉融合到企业资源规划中,在对产品进行分类、扫描和发现缺陷时将需要更少的工人和剪贴板。

例如,Aquifi将计算机视觉技术运用到了固定的IIoT和手持式扫描仪上,可以测量产品尺寸,计算码垛中箱子的数量,并检查箱子的质量。 目前,这通常是通过剪贴板,肉眼和间歇扫描完成的。

对于IIoT来说,计算机视觉将会变得越来越重要,它可以将仓库中发生的事情实时传递出来。

8、运输和供应链管理?

但物联网和区块链技术仍然能够使实时供应链管理变得更加细化。

卡车和车队远程信息处理物联网

<

在线客服
服务热线

服务热线

155-8880-8889

微信咨询
有条有理(上海)道具有限公司
返回顶部